Counting p ′-characters in finite reductive groups
نویسندگان
چکیده
منابع مشابه
Characters of Reductive Groups over Finite Fields
Let E be a connected reductive algebraic group over C and let W be its Weyl group. The Springer correspondence allows us to parametrize the irreducible representations E of W as F = F^^ where u is a unipotent element in G (up to conjugacy) and <p is an irreducible representation of the group of components AH(u) = ZH(u)IZ°H(u). (However, not all <p arise in the parametrization.) For F = F^Uttp) ...
متن کاملSUPERCUSPIDAL CHARACTERS OF REDUCTIVE p-ADIC GROUPS
We compute the characters of many supercuspidal representations of reductive p-adic groups. Specifically, we deal with representations that arise via Yu’s construction from data satisfying a certain compactness condition. Each character is expressed in terms of a depth-zero character of a smaller group, the (linear) characters appearing in Yu’s construction, Fourier transforms of orbital integr...
متن کاملZETA FUNCTIONS AND COUNTING FINITE p-GROUPS
We announce proofs of a number of theorems concerning finite p-groups and nilpotent groups. These include: (1) the number of p-groups of class c on d generators of order pn satisfies a linear recurrence relation in n; (2) for fixed n the number of p-groups of order pn as one varies p is given by counting points on certain varieties mod p; (3) an asymptotic formula for the number of finite nilpo...
متن کاملOn the characters of pro-p groups of finite rank
The proof of this theorem is based on the correspondence between the characters of a uniform pro-p group and the orbits of the action of the group on the dual of its Lie algebra. This result is an analogue of the Kirillov theory, introduced first in the context of nilpotent Lie groups and then used in many other situations (see [7]). The correspondence is quite explicit and it also gives the ex...
متن کاملCharacters of Finite Abelian Groups
Example 1.2. The trivial character of G is the homomorphism 1G defined by 1G(g) = 1 for all g ∈ G. Example 1.3. Let G be cyclic of order 4 with generator γ. Since γ4 = 1, a character χ of G has χ(γ)4 = 1, so χ takes only four possible values at γ, namely 1, −1, i, or −i. Once χ(γ) is known, the value of χ elsewhere is determined by multiplicativity: χ(γj) = χ(γ)j . So we get four characters, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2010
ISSN: 0024-6107
DOI: 10.1112/jlms/jdq001